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The macroscopic states of two model systems are specified at two times 
and their approach to equilibrium for intervening times is studied. The 
models are the Kac ring and a certain automorphism on the torus. If the 
relaxation time is short compared to the interval for the boundary value 
problem, the systems are seen by explicit calculation to decay away from 
the initial state almost as if the final conditions had not been specified. 
As the systems approach the final time they exhibit normal decay in the 
reversed time variable. For longer relaxation times acausal effects may be 
observed. Some remarks are also included on experimental searches for 
the acausal effects of future boundary conditions. 
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1. I N T R O D U C T I O N  

In  this pape r  we examine  some models  whose solut ion m a y  be o f  relevance 
to  the  thesis which connects  t h e r m o d y n a m i c  and  cosmologica l  a r rows o f  
t ime.  W e  shall  also discuss observa t iona l  and  exper imenta l  tests which  could  
presage a fu ture  con t rac t ion  o f  the universe.  

In  sett ing up  a ma themat i ca l  system for  s tudy o f  t ime a symmet ry  some 
care mus t  be exercised in the  selection o f  b o u n d a r y  condi t ions .  I f  one studies 
an  ini t ial  value p rob l em for  mechanica l  systems, the t he rmodyna mic  ar row,  
i f  it  po in ts  a t  all, po in t s  away  f rom the ini t ia l  t ime.  To have any  hope  o f  
demons t r a t ing  an ar row,  one canno t  pre judice  the case at  the outse t  by  
giving init ial  condi t ions ,  and  ins tead  should  give b o u n d a r y  values at  two 
separa te  t imes and  s tudy the behav io r  in between.  This po in t  o f  view has  
been pu t  fo r th  by  a n u m b e r  o f  au thors  ~1-4~ and  in some na tura l ly  t ime-sym- 

1 Physics Department, Teehnion, Haifa, Israel, and Physics Department, Indiana 
University, Bloomington, Indiana. 

217 

�9 1977 Plenum Publishing Corporation,  227 West 17th Street, New York, N.Y. 10011. No part  o f  this publica- 
t ion may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, 
mechanical, photocopying, microfilming, recording, or otherwise, without written permission of  the publisher. 



218 L.S. Schulman 

metric theories it in fact turns out to be difficult or impossible (2'5) to solve 
problems with the usual initial data. 

In this paper we consider models in which macroscopic data are given 
at two times, say t = 0 and t = T, and for intervening times we examine 
the following questions: 

1. Does the system go to equilibrium after time zero ? 
2. Does the system come out of  equilibrium close to time T (reversed 

causality) ? 
3. Is the passage to equilibrium at early times affected by the future 

boundary conditions ? 
4. How are the answers to the foregoing questions affected if the relaxa- 

tion time of the system is on the order of  T ?  
5. What  can these models say by analogy for physical systems, for 

example, long-lived nuclei ? 

The model to which we shall devote most  of our attention is the Kac 
ring model3 6"7) In two appendices we examine boundary value problems for 
a decaying system in quantum mechanics and for a certain automorphism 
of the torus which has been found useful in studies of  relaxation. 

The possibility of  finding experimental evidence for an imminent 
(5 x 10 ~~ yr) collapse of  the universe is discussed in a concluding section. 
In particular, one can use the Kac ring model to disprove the assertion that 
there would be a change in the laboratory-measured lifetime of  long-lived 
nuclear species. Observational evidence for collapse turns out to be more 
subtle and we shall discuss some possibilities. 

2. THE KAC RING M O D E L  

N bails are located at the N sites of  a ring and each second all the balls 
move one step in the counterclockwise direction to occupy new sites. The 
balls are either black or white. Among the N sites there are M special sites 
which affect the dynamics of  the balls' motion in the following way: When 
a ball leaves a special site it changes color. The set of  special sites is called S. 

The following notation (mostly that of  Kac) is useful: p, p = 1,..., N, 
labels sites; equations in p are mod N;  

-- 1 i fp  e S 

% = +1  i fp  r S 

{_+' 
"%(0 = 1 

if the ball at site p at time t is white 

if the ball at site p at time t is black 
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Nw(t) is the total number of white balls at time t; N~(t) is the total number 
of  black balls at time t; 

D(t) = (1/N)[Nw(t) - NB(t)] = ( l / N ) ~  ~u(t) 
P 

is the fractional excess of white balls at time t. ~ = M/N is the density of S, 
assumed to satisfy 0 < t~ < �89 In terms of ~ and ~ the dynamics of the system 
are given by 

�9 /p(t) = %-1%-1(0 ,  p = 1 .... , N  (1) 

Iterating the foregoing gives 

%(t ) = %_1%_ 2"" %- t%- t(0) (2) 

The exact expression for D(t) is 

1 N 
D(t) = ~ ~ %+t_1...%%(0) ~ (3) 

p = l  

We shall not reproduce the molecular chaos argument (Stosszahlansatz) 
showing that D(t) --~ 0 and the associated discussion of the recurrence and 
reversibility paradoxes. These can be found in Kac's book. Instead we shall 
immediately perform the ensemble averaging of S needed to obtain relaxa- 
tion of  the system. 

Consider an ensemble of  dynamical systems with different possible sets 
S. For each member of the ensemble the set, S is specified through flipping 
a biased coin N times, once for each site. In effect, e~ is a random variable 
with 

prob(% = - 1 )  = tz, prob(% = +1)  = I - p (4) 

%, %, are independent for p ~ p'  

Clearly 
( , p )  = 1 - 2 ~  = e -  y a l l  p ( 5 )  

which defines ~,. 
The ensemble average of D(t) can now be computed (for t < N) 

1 N 
(D(t)) = ~ p~=l (% +t- 1"'" %)~7~(0) 

1 N 
= N,~I  ( " + ' -  1) ... (,,)~,(0) 

N 

= (1 - 2/~) t ~ %(0) = e-rtD(O) (6) 
p = J .  

which gives exponential decay of  D. The restriction to t < N occurs since 
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otherwise squares of the ~'s appear in the sum. This is a reflection of the 
fact that even after ensemble averaging there is still a Poincar6 recurrence 
with recurrence time 2N. The linear dependence of the recurrence time on 
the number of "particles," rather than a more physical exponential depen- 
dence, occurs because the dynamics of the system, for given initial condi- 
tions, restricts the system to a small subset of the 2 N possible states. 

3. T W O - T I M E  B O U N D A R Y  C O N D I T I O N S  

We consider systems for which D assumes given values at two times 

D(0) = a (7) 

D(T) = fl (8) 

While T is to be considered a large number (analog of age of the universe), 
it is still small compared to 2N, the Poincar6 recurrence time. Clearly once 
the state of the system is given at t = 0 its value at t = T is fixed and there- 
fore only a small fraction of those initial conditions for which (7) is true 
will also satisfy (8). Our method is to do an ensemble average not only over 
the set S ,  but also over those initial sequences {V~(0)} that satisfy both (7) 
and (8) on the average. 

For this double averaging to make sense it must be done sequentially, 
first over {%(0)} for fixed S and then over S. Suppose S is fixed, and con- 
sider "microscopic" data ~(0) satisfying 

N 

a = (I/N) ~ %(0) (9) 
19=1 

N 

/3 = (I]N) ~ e~+r=z'-'%v~(O) (10) 
p = l  

For convenience define 

~n = V~(0), 8~ = %+r - z ' "% (11) 

As in the selection of S, we shall look not only at sequences that satisfy 
(9) and (10) exactly, but at others also; ~ is selected by another random 
process designed to guarantee only that 

a = (l /N) ~ (r (12) 

/3 = (l /N) ~ 8~(r (13) 
p 

To motivate the process used to fix ~p we consider some definite sequence 
4~, p = 1,..., N, satisfying (9) and (10); these constraints separately determine 
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the number of (+  1)'s and ( -1 ) ' s  among the Cp for which 3~ = + 1 and 
among those for which 3~ = - 1. Let 

C = {PlS, = +1} (14) 

The,, set C is fixed by S. The symbol C also stands for the number of elements 
in the set C. Let 

x = ~  r Y = N - c  r (15) 

Then by (9) and (10) 

o~ = c x  + c ' y ,  /3 = c x  - c ' y  (16) 

where c = C/N and c' = 1 - c. It follows that if a random process is to 
be used in selecting Cp, Eq. (15) should be satisfied on the average, and there- 
fore the probabilities used for picking Cv, p ~ C, should be different (since 
in general x # y) from those used for p r C. Let Cp for p e C have probability 
~: of taking the value - 1, Cp for p ~ C have probability ~ of taking the value 
- 1 ,  and let Cv and r be independent for p ~ p'. From (15) it follows that 

x =  1 - 2 ~ ,  y =  1 - 2 7  (17) 

This assignment of probabilities guarantees that the average behavior of 
sequences in the macroscopically defined ensemble is the same as that of 
the sequences in an ensemble defined by requiring the conditions (7) and 
(8) exactly. 

Not all boundary conditions admit of solution. The inequalities 

0 < ~:< 1, 0 < ~ < 1 (18) 

restrict a and/3 to the rectangle 

I a +/31 ~< 2c, ]a -/31 ~< 2c' (19) 

The object of interest is 

13(0 = ((D(t))r = ~r r 

where the appropriate averaging process is indicated by a subscript r or e. 
The first and essentially only probabilistically interesting aspect of our 
calculation has now made its appearance, in that the variable Cp is not 
independent of the ds, because the selection of r depended on 3p = 
%"" %+ r-1. This dependence is exactly what makes our calculation work. 

The sum over p is broken into that over C and that over its complement, 
and averaging of r is performed. Then 

/3(,) ( 1  ) ( 1 ~ c  ) = ~ % e. (21) x - + Y N ""%+t-1 -" %+ t- i 
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The remaining brackets in (21) are conditional expectation values and so 
as to simplify their calculation we make the following definitions: 

E = {ple~%+l.- . ,~+,-1 = 1}, F = { P l % + c " , ~ + r - 1  = 1} (22) 

By the definition o f  8v 

C = ( e  n F)  u ( e '  n F ' )  (23) 

(prime is complementation).  To evaluate 

( ' , " "  %+t-  1)0, = + 1 (24) 

[which is what  appears in the first sum in (21)] we need the measures o f  the 
sets z E n C and E n F. In  terms of  these 

P ( E  n C ) ( +  l) + P ( E ' n  C ) ( - 1 )  (25) 
(ev"" ev+t -  i )o,  = + 1 = P ( C )  

By (23) E n C = E n F a n d  E ' n C = E ' n F ' ,  and since E and F a r e  
independent,  it follows that  

P ( E ) P ( F )  - [1 - P(E)][1 - P(F)]  (26) 
( ,v"" % + t -  1)o,= +1 = P ( C )  

Similarly, since C '  = (E n F ' )  u (E '  n F),  we have 

P(E)[1 - P(F)]  - [1 - P ( E ) ] P ( F )  (27) 
( % ' "  ~, + t -  1)o, = - 1 = P ( C ' )  

The probabilities P(E) ,  P(F) ,  and P ( C )  are not  condit ional  and can simply 
be evaluated f rom (taking E as an example) 

( ' v ' " % + t - l >  = <%) "" (~v+t-l> = e - n  

= P ( E ) ( +  1) + [1 - P ( E ) ] ( -  1) (28) 

so that  

P ( E )  = �89 + �89  P ( F )  = �89 + �89 - ' ( r - ~  P ( C )  = �89 + �89 - r r  = c 

(29) 

These results are substituted in (21) and after some algebra one obtains 

a - f i e -  yr fl - (ze- rr 
D ( t )  = 1 e -2yT e-Yt + 1 - e -2yr e-Y(r-t) 

= (sinh y T ) - l { a  sinh[y(T - t ) ]  + 13 sinh(Tt)} (30) 

2 Strictly speaking, we are not looking at the sets E n C, etc., themselves, but rather at 
measures of sets in an implicitly understood sample space f] (indexed by oJ). Thus by 
P ( E  nC)  is actually meant "measure of the set in f~ for which Cv(oJ) is such that 
p e E n  C." 
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Equation (30) is the main result of this paper. D(t) is the sum of two 
exponentials, one dropping off as t increases and one increasing as t ap- 
proaches T. For  7T >> 1, during the system's early evolution it decays in a 
normal fashion away from the initial value D(0) = ~ so long as e -yr is 
ignored. On the approach to T the term e -~r-~  dominates and, if one were 
to look at things in the time-reversed variable ~- = T -  t, a normal decay 
away from ~- = 0 would be observed. To an observer who through some 
quirk of fate managed to have his time sense in the direction t but never- 
theless was living in the era just before T, a strange scene would unfold. 
Although the microscopic behavior of each ball and site would be un- 
impeachable, there would seem to be some conspiracy afoot to form a 
systematically more ordered state as the function D(t) increased its value 
toward/3 - '  D(T). (We are implicitly assuming the easily verified fact that 
AD = {[D(t) - /9(t)]2} 1/2 goes as 1/V/N.) It would look like a movie of  
breaking eggs run backward. 

To continue the discussion for nonzero e-yr,  we simplify a bit by taking 
= /3, so that 

D(t) = ~ coshD,(�89 t)] 
cosh(~,T/2) (31) 

This is the hyperbolic cosine anticipated by Wheeler3 a~ The minimum value 
of D is [cosh(~,T/2)] -1. If  e -yr is not negligible, the curve is seen to depart 
effectively from its exponential decay. In particular, one might define an 
effective decay rate from the ratio 

I' = - ( l /D) OD/Ot (32) 

From (31) 

r = ~, t a n h b , ( ~ T -  t)] (33) 

I f  for most times the argument of tanh is large, the system decays or "re-  
verse decays" most of the time. If  ),T is not large, the decay rate for D 
never reaches the value it has for the initial value problem. 

4. R E M A R K S  ON E X P E R I M E N T  

Before saying anything positive, we would like to use the Kac ring 
model to eliminate one kind of experiment that one might have thought 
could be used to estimate the time T. 

For  purposes of analogy, the time T should be thought of as the period 
for a single cosmological oscillation. Just to fix numbers, we shall take this 
as being on the order of 60 x 109 years, in line with Wheeler's estimate/8) 
To see departures from exponential decay one needs phenomena with 
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relaxation times on this order and certain unstable nuclear species do have 
the required lifetimes. One candidate might be Sm 147, which has a half-life 
of about 1011 yr and is also reasonably abundant. Another possibility is Rb 87. 
So as not to prejudice the discussion, we shall refer to the unstable species 
as A and let its decay be A -+ B + C. We assume that dynamically A should 
decay according to e-~t. 

Despite the suggestiveness of  Eq. (33), if one measures the lifetime of 
a sample of A in the laboratory, he will see the decay rate ~, and not 

tanhb,(�89 - t)]. The future collapse of the universe will not influence the 
laboratory results, not now (t < T/2 presumably) and not even for t > I"[2 
if one could somehow survive past T]2 with time sense intact. (Throughout 
this paper we assume that consciousness alad the thermodynamic arrow 
ought to go in the same direction. Although we phrase our discussion in 
terms of this reasonable though difficult to prove hypothesis, our results 
in no way depend on it.) 

The laboratory experiment on the sample of A is modeled in Kac's ring 
as follows: Suppose that at some time T1 the sites 42, 43 ..... 42 -I- K -  1 
are all occupied by white balls. We want to predict the subsequent behavior 
of those K balls. The number K (lab sample ~ 1024) is assumed very small 
compared to N (total number of A's in the universe, say 1065). To study 
this question in our earlier model we must build the additional condition 
into our ensemble. Thus the sequences ~ must satisfy, besides Eqs. (12) and 
(13), the additional condition that 

~(T~) = E~-~ ' "%-r l+~p- r l+~  = 1 fo rp  = 42 ..... 42 + K -  1 
(34) 

But now the answer to our question is trivial. For given S, the condition 
(34) fixes K of the ~p's (specifically ~ with q = 41 - T1,..., 42 - T1 + K 
mod N) precisely and no coin is to be flipped for these K balls. Withdrawing 
these K balls from the random process has no discernible effect on the 
selection of the remaining N - K balls if K is small enough compared to N. 
Concerning the K balls of interest, we are given that they are white at t = Tt 
and when the averaging over S is performed they will decay exactly as in 
the usual initial value problem for the Kac ring model. 

The function D(t) therefore does not say much about the behavior of 
small, specially selected samples, but rather is directed to the overall abun- 
dance of A in the universe. An estimate of T must then come from estimates 
of  the overall abundance of A as a function time. Unfortunately, here, too, 
there are problems. According to the present picture of  heavy element pro- 
duction, creation of  A is going on all the time in stars by processes Z ~ A 
other than A ~ B + C. Thus the boundary value problem with large initial 
and final values is not a good description of A. What is needed is a species 
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that early in the universe's history comes into existence by a process that 
ceases to operate subsequently (and until the universe is dense enough near 
the end of its cycle for the reverse process). When creation of A by this 
process is finished, A ~ B + C takes over. There may be no long-lived 
nucleus that fits this picture. Furthermore, even granted such a species, 
measurement of the time dependence of overall abundance with the accuracy 
needed to distinguish cosh from exp does not seem practicable. 

There are other slowly relaxing processes in the universe. The dynamics 
of a cluster of  galaxies may be a place to look for a system which is not 
coming to equilibrium as fast as the usual statistical mechanics says it ought. 
The problems here are that (1) the mechanics of  clusters are not fully under- 
stood, (2) the relaxation times may not be long enough, and (3) in principle 
a system in free space bound by its own attractive forces cannot be in per- 
fect equilibrium because particles at the tail of  the Maxwell-Boltzmann 
distribution can escape. 

5. C O N C L U S I O N  

5.1. Exper iments  

The kind of experiment proposed above makes sense even if one rejects 
our model and the philosophy behind it. One can think simply in terms of 
checking on whether we have an oscillating cosmology and whether the 
state of the universe is roughly the same at the beginning and end of each 
oscillation. If the latter is indeed the case and if f (t) is some cosmological 
dynamical quantity, then f(t) should be symmetric about T/2 (T = period 
of oscillation). An experimental test then consists in finding a system for 
which symmetric behavior of f is inconsistent with the evolution of f as 
predicted by the usual statistical mechanics. Using Wheeler's ~8~ figures and 
our model, the be s t fwou ld  be one with a relaxation time of about 40 • 109 
yr, for which the exp and cosh would differ by about 11 ~o. 

The experiments suggested earlier are probably not practicable. However, 
inasmuch as an estimate of T as contemplated in this article is logically dis- 
tinct from measurements of  T from deceleration of cosmological expansion, 
it seems that a more feasible experimental test would be of great interest. 

5.2. Kac Ring M o d e l  

Our model calculation, with its hyperbolic cosine time dependence, will 
not come as a surprise to many of those who have thought about this prob- 
lem. However, in view of the fact that the obvious is not always easily 
provable and may even be controversial we feel there is a real benefit in 



226 L.S. Schulman 

having a fully solved model. One immediate benefit of this model was in 
answering a question about laboratory measurements of lifetimes. 

5.3. Entropy in Oscillating Universes 

In passing, we wish to reconcile calculations showing entropy increase 
in oscillating universes, such as that reported in Ref. 9, with the symmetric 
view represented in this paper and in Refs. 4 and 10. If one assumes ab 
initio that there is never any switch in the thermodynamic arrow and calcu- 
lates accordingly, bringing in light absorption and other irreversible pro-  

cesses where necessary, then it is understandable that increase in entropy 
within an oscillation and in successive oscillations can result. On the other 
hand, with symmetric boundary conditions the usual causality and with it 
entropy production are reversed toward the end of an oscillation and there- 
fore explicit calculations based on irreversible equations cannot be con- 
tinued into that era. (Entropy in the Kac ring model can easily be defined and 
behaves as expected.) Our conclusion is that logically speaking both sym- 
metric and nonsymmetric approaches to the problem are consistent and it 
is experiment that must choose between them. 

APPENDIX A. BOUNDARY VALUE PROBLEM FOR AUTO- 
MORPHISMS ON A TORUS 

Phase space for this system is the two-dimensional torus of radii o n e  

and the dynamics are given by the automorphism 

x(t+ 1 ) = x ( t ) + y ( t )  mod l ,  y(t+ 1 ) = x ( t ) + 2 y ( t )  m o d l  
(A.1) 

This system has been extensively studied for its mixing properties (11) and 
also in two-time boundary value problems. (12) The method we shall now 
present leads to simplification of the boundary value problem. Rewrite (A. 1) 
a s  

~= (Xy), ~ ( t + i ) = i ~ ( t )  modi ,  M =  (I  ~) ( i .2)  

Because M has integer entries, we can write simply 

~(t) = it~(O) mod 1 (A.3) 

with the mod 1 operation taken at the end. 
Let there be a number of initial points ~, i = 1 ..... N. Let 

. t V  i - -1  



Illustration of Reversed Causality with Remarks on Experiment 227 

The two-dimensional delta function on the torus is 

8(0 = ~ exp[2~ri(xn + ym)] =-- E exp(2wff~) 
l l p m  m - -  o o  V 

dZ~ ~(~) = dx dy 8(0 = 1 (A.5) 

where the bar on v indicates transpose and v = ( n ) .  

The advantage of using (A.4) with the periodic delta function is that 
the mod 1 in (1.3) can be ignored and we have 

p(~:, t) = N ~ ~ exp[27ri~(, - Mr,,)] (1.6) 

From this we identify the Fourier coefficients of p (the tilde denotes Fourier 
transform) 

1 t t~v(t) = ~ ~ exp(--2rri~M ~,) (A.7) 

The mixing property of the system is reflected in the rapid growth of the 
matrix elements of M t. The time dependence of p,(t) is obviously (using 
M =  M) 

p,(t) = Pu, v(0) (A.8) 

Consequently, if the initial distribution is smooth enough that #~(0)~, 
1/Ivl ~, then a given Fourier coefficient Vo will drop off according to the rule 
(A.8). The elements of M t grow according to 

(Mt), j  ~ e v', y = log[(3 + a/-5)/2] ~ 0.96 (1.9) 

so that we can expect #~(t) ~ exp(-ykt) .  The only exception to this rule is 

v =  (00) andwehave 

p ( ~ , t ) ~ l  as t ~  (A.10) 

A number of possibilities suggest themselves for the two-time boundary 
condition problem. For example, one could consider specifying certain 
moments of p initially and finally. This turns out to be trivial and gives a 
symmetric time dependence which does not use the mixing property of the 
system. 

The boundary information that we shall give is that the system points 
were contained in a measurable set A initially and in another measurable 
set B finally. All configurations satisfying these conditions will be given equal 
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weight. Let At represent the image of the set A under the tth power of the 
automorphism and for a set C let Xc(f) be the characteristic function of the 
set. Let t~ be Lebesgue measure. The mixing property states that 

lim/~(& c~ B) = tz(A)t~(B) (A.11) 
t - - r  oO 

which in view of our various definitions is equivalent to 

lim ~ 2"~2A~, lim ~ - * -  = X~XA,~% = 0 (A. 12) 
t--* oo t - -*  r " 

v~O v~O 

That is, except for the term v 0, a sum of terms "* " = XB',XA,M% goes to zero. 
This does depend on the details of M since it is the rapid growth of M and 
the irrationality of its eigenvectors that guarantee this. For  fixed v it is not 
hard (see Ref. 11, Section 10) to use (A.12) to get 

x~ 2B,,_,2A,Z~,___~O as t--+oo (A.13) 

~ o  

To satisfy the boundary conditions given above, imagine that points 
in A are examined to see whether they get to B at time T. All points that 
do are kept. Thus if at t = 0, O is proportional to XA, at t = T it should also 
be proportional to XB. The density function satisfying this (and which is 
not properly normalized) is 

p(~, 0) = XA(~:)XB-r(~) (A. 14) 

The Fourier coefficients of O, with their time dependence, are 

#~(t) = PM%(0) = ~ 2A.M%-,~2B,~-% (A.15) 
a 

For fixed v, such that M~v is not too large, and for large T, the only significant 
contribution to the sum will be from cr = 0. This is just the mixing property 
as expressed in Eq. (A.13). But then the behavior of O is 

p,(t) ~ 2A,Mt,~(B) (a.16) 

since ~(B) = 2Bo. Thus if Pv is normalized by dividing by ~(B), the time 
dependence looks just like the usual decay away from the density XA. For  
later times t one can expect all terms in the sum (A.15) to be small until 
as t approaches T we expect p to become proportional to XB- This can be 
seen through rewriting (A. 15) as (with a few changes of variables) 

 v(r - = 
a 

For large T and small ~- the only significant term is again cr = 0. 
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The interesting situation is when T is short enough (or one is looking 
at high enough Fourier coefficients) to see noncausal effects, e.g., effects of 
future boundary conditions during the period t < 7/2. The sum (A.15) is 
again rewritten as 

#v(t) = ~ 2A,Mt,- ~%2B~ (A. 17) 
G 

Seeing future effects corresponds to components of 2B other than ~ = 0 
being significant. These will contribute most to the sum for those ~ for 
which Mr~ is as small as possible, so that Mtv - M %  can be as small as 
possible. The matrix M has eigenvalues e ~ and e - r  [Eq. (A.9)] and M*cr 
will grow most slowly for ~r close to the eigenvector of  M with eigenvalue 
e-  r. Of course the irrationality of the components of this vector prevents ~r, 
with integer components, from being an exact eigenvector. From a practical 
point of view approximate eigenvectors do not buy too much time. Even 
for as good an approximation as 

-�89 + 1) - ( - 6 1 0 / 3 7 7 ) ~  3 x 10 -8 

it only takes seven steps before the small component in the direction of the 
other eigenvector reaches appreciable size (~  1). 

The message to be gotten from (A.17) is that the most persistent (in 
minus t) effects of  the future are the Fourier coefficients of modes ~r with 
slow growth under M. In physical terms the conclusion is that one should 
look for phenomena with very slow relaxation times. This is an obvious 
conclusion and reaching it hardly requires all the foregoing formalism. 
However, for many of  the topics treated in this paper it is worthwhile to 
provide justification for certain "obv ious"  points of  view. 

A P P E N D I X  B. B O U N D A R Y  V A L U E  P R O B L E M S  IN 
Q U A N T U M  M E C H A N I C S  

In this case we do not have a neat explicit solution and our main interest 
is in formulating the boundary value problem. Having done so, we shall 
argue heuristically concerning solutions. 

Since the dynam!cal equation of quantum mechanics is first order in 
time, there is no natural way to give two-time boundary conditions as in 
classical mechanics. We shall suggest a particular boundary value problem 
for which, as is often the case in these circumstances, there is no guarantee 
of  existence or uniqueness of solution. 

Given some basis 1@, c~ = 0, 1,..., iV, the ensemble will be specified 
by the diagonal elements of the density matrix at two times: 

<~lp(0)l~>, <alp(T)l,~> (B.1) 
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To see how this can give reversed causality, suppose the system has the 
property that for the initial value problem, if the system is started in the 
state 10), it decays exponentially and spreads evenly among the N states. 
Call this solution of the wave equation I~bR). Models of  such systems are 
discussed in Refs. 13 and 14. We assume as usual that T << recurrence time. 
Consider the specific boundary values 

<01p(t)10> = �89 (B.2) 

(~lp(t)l=> = 1/2N, ~ = 1,..., N 

for t = 0 and t = T. One state in (or almost in) this ensemble is 

= (r  + ~ ) / V ~  (B.3) 

where ~ba is the reversed solution, given for real Hamiltonian and real basis 
functions by ~bA(t) = ~bR*(T- t). Even if ~b does not exactly satisfy (B.2), 
we shall assume that there are many wave functions near it (in norm) which 
do. I t  is true that some of these states may have large components in the 
direction I 0) or in some other direction for times t, 0 < t < T, but this 
ought to be about  as likely as a Poincar6 recurrence. Consequently, when 
an ensemble average is performed the overall behavior of  the ensemble should 
be exponential decay away from 10) after t = 0 and growth back to ]0) as 
t approaches T. 
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